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Diversity Maximization

Given a set of objects, how to pick a few of them while 
maximizing diversity?
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Image from: http://news.mit.edu/2017/better-recommendation-algorithm-1206



• Searching
• Recommender Systems
• Summarization
• Object detection, …

A small subset of items must be selected to represent the larger 
population

Diversity Maximization

Given a set of objects, how to pick a few of them while 
maximizing diversity?



Diversity Maximization: The Model

Points in a high 
dimensional space

Objects (documents, 
images, etc)

Feature 
Vectors

E.g.
• Objects: images
• Dimensions: pixels
• Values: intensity of the image in the corresponding pixel



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points while maximizing “diversity”. 

Diversity Maximization: The Model

𝒌𝒌 = 𝟑𝟑



What is Diversity?
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Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the 
picked points is maximized.

Diversity I: Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑
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Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
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Greedy Algorithm



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the sum of pairwise distances of the picked 
points is maximized.

Diversity II: Sum of Pairwise Distances

𝒌𝒌 = 𝟑𝟑



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the sum of pairwise distances of the picked 
points is maximized.

Diversity II: Sum of Pairwise Distances

𝒌𝒌 = 𝟑𝟑



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the sum of pairwise distances of the picked 
points is maximized.

Diversity II: Sum of Pairwise Distances

𝒌𝒌 = 𝟑𝟑

 Local Search Algorithm



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the volume of the parallelepiped spanned 
by them is maximized.

Diversity III: Volume

𝒌𝒌 = 𝟐𝟐
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Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the volume of the parallelepiped spanned 
by them is maximized.

Diversity III: Volume

𝒌𝒌 = 𝟐𝟐

Convex optimization + 
randomized rounding 

Higher order notion of diversity (not based on pairwise distances only)



Existing Results on Diversity Maximization

Diversity maximization in the offline setting

Diversity Notion Offline

Min Pairwise 
Distance

𝜽𝜽 𝟏𝟏
[Ravi et al 94]

Sum of Pairwise
distances

𝜽𝜽(𝟏𝟏)
[Hassin et al 97]

… …

Volume 𝑶𝑶 𝒄𝒄𝒌𝒌 ,𝛀𝛀(𝒄𝒄′𝒌𝒌)
[Nikʹ15],[CIMʹ13]



Diversity maximization over large 
data sets

• Background on diversity maximization and how to model diversity

• Notion of composable core-sets

• Algorithms for finding core-sets for diversity maximization

1. Maximizing the minimum pairwise distance

2. Maximizing the volume



Diversity maximization over large data sets

• Most applications deal with massive data

• Lots of effort for solving the problem in massive 

data models of computation [MJK’17, WIB’14, PJG+’14, 

MKSK’13, MKBK’15, MZ’15, MZ’15, BENW’15]

• e.g. streaming, distributed, parallel

[MJK’17,GCGS’14] 
Video summarization

[KT+’12, CGGS’15,KT’11] 
Document summarization

[YFZ+’16] 
Tweet generation

[LCYO’16] 
Object detection
….
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Composable Core-sets



Composable Core-sets

Core-sets [AHV’05]: a subset 𝑺𝑺 of the data 𝑽𝑽 that represents it well

Solving the problem over 𝑺𝑺 gives a good approximation of solving the problem 
over 𝑽𝑽
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Applications: Streaming Computation

• Streaming Computation: 
• Processing sequence of 𝑛𝑛 data elements “on the fly”
• limited Storage

• 𝒄𝒄-Composable Core-set of size 𝒌𝒌
• Chunks of size 𝑛𝑛 , thus number of chunks = 𝑛𝑛
• Core-set for each chunk
• Total Space:   (core-set size)⋅ 𝑛𝑛 + 𝑛𝑛
• Approximation Factor: 𝑐𝑐

𝒏𝒏 𝒏𝒏

Core-set Core-set



Applications: Distributed Computation

• Streaming Computation
• Distributed System:

• Each machine holds a block of data.
• A composable core-set is computed and sent to the server

• Map-Reduce Model: 
• One round of Map-Reduce
• 𝑛𝑛 mappers each getting 𝑛𝑛 points
• Mapper computes a composable core-set of size 𝑘𝑘
• Will be passed to a single reducer

Core-set

Data

Data

Data

Mapper

Mapper

Mapper

Reducer Solution



Applications: Improving Runtime

• Streaming Computation
• Distributed System
• Similar framework for improving the runtime



Can we get a composable core-set 
of small size for the diversity 

maximization problem?

• Background on diversity maximization and how to model diversity

• Notion of composable core-sets

• Algorithms for finding core-sets for diversity maximization

1. Maximizing the minimum pairwise distance

2. Maximizing the volume



Results

Composable Core-sets for Diversity Maximization:

Diversity Notion Coreset Size Approx. Reference Offline

Min Pairwise 
Distance

𝑘𝑘 𝑂𝑂(1) [IMMM’14] 𝜽𝜽 𝟏𝟏
[Ravi et al 94]

Sum of Pairwise
distances

𝑘𝑘 𝑂𝑂(1) [IMMM’14] 𝜽𝜽(𝟏𝟏)
[Hassin et al 97]

… …

Volume �𝑂𝑂(𝑘𝑘) �𝑂𝑂 𝑘𝑘 𝑘𝑘/2 [IMOR’18] 𝑶𝑶 𝒄𝒄𝒌𝒌 ,𝛀𝛀(𝒄𝒄𝒌𝒌)
[Nikʹ15],[CIMʹ13]
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Diversity: Minimum Pairwise 
Distance

Joint work with S. Abbar, S. Amer-Yahia, P. Indyk, K. Varadarajan

• Background on diversity maximization and how to model diversity

• Notion of composable core-sets

• Algorithms for finding core-sets for diversity maximization

1. Maximizing the minimum pairwise distance

2. Maximizing the volume



Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,

Goal: pick 𝒌𝒌 points s.t. the minimum pairwise distance of the 
picked points is maximized.

Minimum Pairwise Distance

𝒌𝒌 = 𝟑𝟑



Maximizing the minimum pairwise distance

The Greedy Algorithm produces a composable core-set of

size 𝑘𝑘 with approximation factor 𝑂𝑂(1).



Maximizing the minimum pairwise distance

The Greedy Algorithm produces a composable core-set of

size 𝑘𝑘 with approximation factor 𝑂𝑂(1).

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an empty set 𝑆𝑆

2. For 𝑘𝑘 iterations, add the point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 that is farthest 
away from 𝑆𝑆.
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𝒌𝒌 = 𝟑𝟑

𝑟𝑟
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Observation

𝒌𝒌 = 𝟑𝟑

𝑟𝑟

Let 𝑟𝑟 be the diversity of 𝑆𝑆, i.e., min
𝑞𝑞1,𝑞𝑞2∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞1, 𝑞𝑞2)

Observation: For any point 𝑝𝑝 ∈ 𝑉𝑉, we have 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑆𝑆 ≤ 𝑟𝑟

• ∃𝑞𝑞 ∈ 𝑆𝑆 such that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑝𝑝, 𝑞𝑞 ≤ 𝑟𝑟



Proof Idea

The Greedy Algorithm produces a composable core-set of

size 𝑘𝑘 with approximation factor 𝑂𝑂(1)
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Maximizing the minimum pairwise distance

The Greedy Algorithm produces a composable core-set of

size 𝑘𝑘 with approximation factor 𝑂𝑂(1).
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Nearest Neighbor Data Structure (LSH)



Experimental Results

Real time recommendation of diverse related articles [AAIM WWW’13]
Goal:

Recommend a few news articles based on what article the user is currently 
reading. 
Data:
Aljazeera English opinion articles, and Reuters news articles

Results:
The algorithm works well in practice, e.g., 

• In compare to k-nearest neighbor retrieval, we gain ~37% in diversity 
while losing only ~5% on relevance.

• Adding the coresets to the LSH improves the retrieve time by ~20x, 
with no meaningful loss on diversity.



Diversity Notion Coreset Size Approx. Reference Offline

Min Pairwise 
Distance

𝑘𝑘 𝑂𝑂(1) [IMMM’14] 𝜽𝜽 𝟏𝟏
[Ravi et al 94]

Sum of Pairwise
distances

𝑘𝑘 𝑂𝑂(1) [IMMM’14] 𝜽𝜽(𝟏𝟏)
[Hassin et al 97]

… …

Volume �𝑂𝑂(𝑘𝑘) �𝑂𝑂 𝑘𝑘 𝑘𝑘/2 [IMOR’18] 𝑶𝑶 𝒄𝒄𝒌𝒌 ,𝛀𝛀(𝒄𝒄𝒌𝒌)
[Nikʹ15],[CIMʹ13]

Results

Composable Core-sets for Diversity Maximization:



Diversity: Volume of the points

• Background on diversity maximization and how to model diversity

• Notion of composable core-sets

• Algorithms for finding core-sets for diversity maximization

1. Maximizing the minimum pairwise distance

2. Maximizing the volume

Joint work with P. Indyk, S. Oveis Gharan, A. Rezaei
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What is known?

• Hard to approximate within a factor of 2𝑐𝑐𝑐𝑐 [CMI’13]
• Best algorithm: 2𝑂𝑂(𝑘𝑘)-approximation [Nik’15]
• Greedy is a popular algorithm: achieves approximation factor 𝑘𝑘!
𝑈𝑈 ← ∅
For 𝑘𝑘 iterations, 
Add to 𝑈𝑈 the farthest point from the subspace spanned by 𝑈𝑈

• Greedy performs very well in practice

𝒌𝒌 = 𝟐𝟐



Determinantal Point Processes (DPP)

DPP: Popular probabilistic model, where given a set of vectors 

𝑉𝑉, samples any 𝑘𝑘-subset 𝑆𝑆 with probability proportional to 

this volume.

• Maximum a posteriori (MAP) decoding is volume 

maximization



Determinant (Volume) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆
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Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
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• Parallelepiped spanned by the points in 𝑆𝑆
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in 𝑉𝑉
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Determinant (Volume) Maximization Problem

Input: a set of 𝑛𝑛 vectors V ⊂ ℝ𝑑𝑑 and a parameter 𝑘𝑘 ≤ 𝑑𝑑,
Output: a subset 𝑆𝑆 ⊂ 𝑉𝑉 of size 𝑘𝑘 with the maximum volume

• Parallelepiped spanned by the points in 𝑆𝑆

Equivalent Formulation: 
Reuse 𝑉𝑉 to denote the matrix where its columns are the vectors 
in 𝑉𝑉
• Let 𝑀𝑀 be the gram matrix 𝑉𝑉𝑇𝑇𝑉𝑉
• Choose 𝑆𝑆 such that det(𝑀𝑀𝑆𝑆,𝑆𝑆) is maximized

𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖 · 𝑣𝑣𝑗𝑗

det 𝑀𝑀𝑆𝑆,𝑆𝑆 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆 2

𝑣𝑣1
𝑣𝑣2
…
𝑣𝑣𝑛𝑛

𝑣𝑣1 𝑣𝑣2 …𝑣𝑣𝑛𝑛



Result: optimal composable core-set

Composable Core-sets for Volume Maximization:

Algorithm:

There exists a polynomial time algorithm for computing an �𝑶𝑶 𝒌𝒌
𝒌𝒌
𝟐𝟐 -

composable core-set of size �𝑶𝑶(𝒌𝒌) for the volume maximization problem.

Lower bound:
Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the volume maximization

problem must have an approximation factor of 𝛀𝛀(𝒌𝒌)
𝒌𝒌
𝟐𝟐(𝟏𝟏−𝒐𝒐 𝟏𝟏 ).



Result: optimal composable core-set

Composable Core-sets for Volume Maximization:

Algorithm:

There exists a polynomial time algorithm for computing an �𝑶𝑶 𝒌𝒌
𝒌𝒌
𝟐𝟐 -

composable core-set of size �𝑶𝑶(𝒌𝒌) for the volume maximization problem.

Lower bound:
Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the volume maximization

problem must have an approximation factor of 𝛀𝛀(𝒌𝒌)
𝒌𝒌
𝟐𝟐(𝟏𝟏−𝒐𝒐 𝟏𝟏 ).

 Note the gap with the approximation factor of the best offline algorithm: 2𝑂𝑂(𝑘𝑘)



Algorithm:
There exists a polynomial time algorithm for computing an �𝑶𝑶 𝒌𝒌 𝒌𝒌 -
composable core-set of size �𝑶𝑶(𝒌𝒌) for the volume maximization problem.

In this Talk

Composable Core-sets for Volume Maximization:

Lower bound:
Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the volume maximization

problem must have an approximation factor of 𝛀𝛀(𝒌𝒌)
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Local Search Algorithm

The Local Search Algorithm produces a composable core-set

of size 𝑘𝑘 with approximation factor 𝑂𝑂 𝑘𝑘 𝑘𝑘

In compare to the optimal core-set algorithm

 Approximation O 𝑘𝑘 𝑘𝑘 as opposed to 𝑂𝑂 𝑘𝑘 log 𝑘𝑘
𝑘𝑘
2

 Size 𝑘𝑘 as opposed to 𝑂𝑂 𝑘𝑘 log𝑘𝑘
 Simpler to implement (similar to Greedy) 

 Better performance in practice



The Local Search Algorithm 

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t.
replacing 𝑝𝑝 with 𝑞𝑞 increases the volume, then swap 
them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}
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2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t.
replacing 𝑝𝑝 with 𝑞𝑞 increases the volume, then swap 
them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

𝒌𝒌 = 𝟑𝟑

𝑞𝑞

𝑝𝑝



The Local Search Algorithm 

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t.
replacing 𝑝𝑝 with 𝑞𝑞 increases the volume, then swap 
them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

𝒌𝒌 = 𝟑𝟑



The Local Search Algorithm 

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t.
replacing 𝑝𝑝 with 𝑞𝑞 increases the volume, then swap 
them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 > 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝒒𝒒,𝑯𝑯𝑺𝑺∖ 𝒒𝒒 )
𝑞𝑞𝑝𝑝



To bound the run time

Input: a set 𝑉𝑉 of 𝑛𝑛 points and a parameter 𝑘𝑘

1. Start with an arbitrary subset of 𝑘𝑘 points 𝑆𝑆 ⊆ 𝑉𝑉

2. While there exists a point 𝑝𝑝 ∈ 𝑉𝑉 ∖ 𝑆𝑆 and 𝑞𝑞 ∈ 𝑆𝑆 s.t.
replacing 𝑝𝑝 with 𝑞𝑞 increases the volume, then swap 
them, i.e., 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑝 ∖ {𝑞𝑞}

Start with a crude approximation 
(Greedy algorithm)

If it increases by at least a factor of  
(1 + 𝜖𝜖)



Local Search algorithm preserves maximum 
distances to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏

 𝑉𝑉 is the point set
 𝑆𝑆 = 𝐿𝐿𝐿𝐿 𝑉𝑉 is the core-set produced by the local search algorithm.



Local Search algorithm preserves maximum 
distances to “all” subspaces of dimension 𝒌𝒌 − 𝟏𝟏

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑞𝑞∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

 𝑉𝑉 is the point set
 𝑆𝑆 = 𝐿𝐿𝐿𝐿 𝑉𝑉 is the core-set produced by the local search algorithm.



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑞𝑞∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝

𝑮𝑮



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝

𝑮𝑮



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑝𝑝

𝑮𝑮

≤ 𝑥𝑥
≤ 𝑥𝑥

≤ 𝑥𝑥



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐

𝑝𝑝

𝑮𝑮

≤ 2𝑘𝑘𝑘𝑘
≤ 𝑥𝑥

≤ 𝑥𝑥
≤ 𝑥𝑥



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑯𝑯𝑝𝑝

𝑮𝑮

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 𝑘𝑘𝑘𝑘

≤ 𝑘𝑘𝑘𝑘

Lemma 1: 𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝒌𝒌

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒌𝒌

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐



Proof. 

• Let 𝑝𝑝 ∈ 𝑉𝑉 be a point

• Let 𝐺𝐺 be a (𝑘𝑘 − 1)-dimensional subspace. 

• Assume for any 𝑞𝑞 ∈ 𝑆𝑆,   𝑑𝑑 𝑞𝑞,𝐺𝐺 ≤ 𝑥𝑥

• Goal:

• 𝐻𝐻 ≔ 𝐻𝐻𝑆𝑆 be the subspace passing through 𝑆𝑆

• Let 𝑝𝑝𝐻𝐻 be the projection of 𝑝𝑝 onto 𝐺𝐺

Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum distance 
of the point set to 𝐺𝐺 is approximately preserved

max
𝑠𝑠∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)

𝑯𝑯𝑝𝑝

𝑝𝑝𝐻𝐻

𝑮𝑮

≤ 2𝑘𝑘𝑘𝑘

Lemma 1: 𝒅𝒅 𝒑𝒑,𝒑𝒑𝑯𝑯 ≤ 𝒌𝒌𝒌𝒌

Lemma 2: 𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒌𝒌

𝒅𝒅 𝒑𝒑,𝑮𝑮 ≤ 𝟐𝟐𝟐𝟐𝟐𝟐



Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒙𝒙

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒊𝒊=𝟏𝟏𝒌𝒌 𝜶𝜶𝒊𝒊𝒒𝒒𝒊𝒊

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒙𝒙

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒊𝒊=𝟏𝟏𝒌𝒌 𝜶𝜶𝒊𝒊𝒒𝒒𝒊𝒊

• Let 𝑯𝑯−𝒊𝒊 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒊𝒊

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒙𝒙

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒊𝒊

𝑞𝑞𝑖𝑖



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒊𝒊=𝟏𝟏𝒌𝒌 𝜶𝜶𝒊𝒊𝒒𝒒𝒊𝒊

• Let 𝑯𝑯−𝒊𝒊 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒊𝒊

• Since we did not choose 𝑝𝑝 in LS,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒊𝒊 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒊𝒊,𝑯𝑯−𝒊𝒊

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒙𝒙

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒊𝒊

𝑞𝑞𝑖𝑖



Proof. 

• Since 𝐻𝐻 has dimension 𝑘𝑘, we can write 𝒑𝒑𝑯𝑯 = ∑𝒊𝒊=𝟏𝟏𝒌𝒌 𝜶𝜶𝒊𝒊𝒒𝒒𝒊𝒊

• Let 𝑯𝑯−𝒊𝒊 ≔ 𝑯𝑯𝑺𝑺∖ 𝒒𝒒𝒊𝒊

• Since we did not choose 𝑝𝑝 in LS,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒊𝒊 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒒𝒒𝒊𝒊,𝑯𝑯−𝒊𝒊

• Since 𝑝𝑝𝐻𝐻 is a projection of 𝑝𝑝 onto 𝐻𝐻,  𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑𝑯𝑯,𝑯𝑯−𝒊𝒊 ≤ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒑𝒑,𝑯𝑯−𝒊𝒊

•

Lemma 2:   𝒅𝒅 𝒑𝒑𝑯𝑯,𝑮𝑮 ≤ 𝒌𝒌𝒙𝒙

𝑯𝑯
𝑝𝑝

𝑝𝑝𝐻𝐻

Claim:
We can write       𝑝𝑝𝐻𝐻 = ∑𝑖𝑖=1𝑘𝑘 𝛼𝛼𝑖𝑖𝑞𝑞𝑖𝑖 s.t. all 𝛼𝛼𝑖𝑖 ≤ 1

𝑯𝑯−𝒊𝒊

𝑞𝑞𝑖𝑖



Proof. 
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Theorem:
For any (𝑘𝑘 − 1)-dimensional subspace 𝐺𝐺,  the maximum 
distance of the point set to 𝐺𝐺 is approximately preserved

max
𝑞𝑞∈𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞,𝐺𝐺 ≥
1

2𝑘𝑘
⋅ max
𝑝𝑝∈𝑉𝑉

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝐺𝐺)
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 Lose a factor of at most 2𝑘𝑘 at each iteration 

Since local search preserve 
maximum distances to subspaces
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 Total approximation factor 2𝑘𝑘 𝑘𝑘



In this Talk

Composable Core-sets for Volume Maximization:

Algorithm:
There exists a polynomial time algorithm for computing an 𝑂𝑂 𝒌𝒌 𝒌𝒌 -
composable core-set of size �𝑶𝑶(𝒌𝒌) for the volume maximization problem.

Lower bound:
Any composable core-set of size 𝒌𝒌𝑶𝑶(𝟏𝟏) for the volume maximization

problem must have an approximation factor of 𝛀𝛀(𝒌𝒌)
𝒌𝒌
𝟐𝟐(𝟏𝟏−𝒐𝒐 𝟏𝟏 ).
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Experiments: comparison of core-sets for 
volume maximization

• Greedy algorithm 
• Widely used in Practice
• We showed it achieves 𝑂𝑂(𝐶𝐶𝑘𝑘2)

• Local Search algorithm
• Performs better than Greedy but runs ~4 times slower.
• Achieves 𝑂𝑂 𝑘𝑘 𝑘𝑘

• The optimal core-set algorithm
• Achieves �𝑂𝑂 𝑘𝑘 𝑘𝑘/2

• Performs worse than Local Search and runs slower.



Summary

• Different notions of diversity
• Notion of composable core-sets
• Algorithms that find composable core-sets for diversity maximization 

under different notions

Diversity Notion Coreset Size Approx. Reference Offline

Min Pairwise 
Distance

𝑘𝑘 𝑂𝑂(1) [IMMM’14] 𝜽𝜽 𝟏𝟏
[Ravi et al 94]

Sum of Pairwise
distances

𝑘𝑘 𝑂𝑂(1) [IMMM’14] 𝜽𝜽(𝟏𝟏)
[Hassin et al 97]

… …

Volume �𝑂𝑂(𝑘𝑘) �𝑂𝑂 𝑘𝑘 𝑘𝑘/2 [IMOR’18] 𝑶𝑶 𝒄𝒄𝒌𝒌 ,𝛀𝛀(𝒄𝒄𝒌𝒌)
[Nikʹ15],[CIMʹ13]



Open Problems

• Characterizing problems that admit composable coresets
• Optimal algorithms for diversity maximization in other 

massive data models of computation (e.g. Streaming, MPC)
• Composable Core-sets for DPP sampling?
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Thank you!
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