Diversity Maximization over Large Data Sets

Sepideh Mahabadi

Toyota Technological Institute at Chicago (TTIC)

Given a set of objects, how to pick a few of them while maximizing diversity?

Given a set of objects, how to pick a few of them while maximizing diversity?

Searching

Given a set of objects, how to pick a few of them while maximizing diversity?

Searching

Given a set of objects, how to pick a few of them while maximizing diversity?

- Searching
- Recommender Systems

Image from: http://news.mit.edu/2017/better-recommendation-algorithm-1206

Given a set of objects, how to pick a few of them while maximizing diversity?

- Searching
- Recommender Systems
- Summarization
- Object detection, ...

➤ A small subset of items must be selected to represent the larger population

Diversity Maximization: The Model

Objects (documents, images, etc)

Points in a high dimensional space

E.g.

• Objects: images

• **Dimensions:** pixels

• Values: intensity of the image in the corresponding pixel

Diversity Maximization: The Model

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points while maximizing "diversity".

What is Diversity?

Diversity I: Minimum Pairwise Distance

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick *k* points s.t. the minimum pairwise distance of the picked points is maximized.

Diversity I: Minimum Pairwise Distance

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the minimum pairwise distance of the picked points is maximized.

Diversity I: Minimum Pairwise Distance

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the minimum pairwise distance of the picked points is maximized.

☐ Greedy Algorithm

Diversity II: Sum of Pairwise Distances

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the sum of pairwise distances of the picked points is maximized.

Diversity II: Sum of Pairwise Distances

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the sum of pairwise distances of the picked points is maximized.

Diversity II: Sum of Pairwise Distances

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the sum of pairwise distances of the picked points is maximized.

☐ Local Search Algorithm

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the volume of the parallelepiped spanned by them is maximized.

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the volume of the parallelepiped spanned by them is maximized.

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the volume of the parallelepiped spanned by them is maximized.

☐ Convex optimization + randomized rounding

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the volume of the parallelepiped spanned by them is maximized.

☐ Convex optimization + randomized rounding

☐ Higher order notion of diversity (not based on pairwise distances only)

Existing Results on Diversity Maximization

Diversity maximization in the offline setting

Diversity Notion	Offline
Min Pairwise Distance	heta(1) [Ravi et al 94]
Sum of Pairwise distances	heta(1) [Hassin et al 97]
•••	
Volume	$O(c^k), \Omega(c'^k)$ [Nik'15],[CIM'13]

Diversity maximization over large data sets

- Background on diversity maximization and how to model diversity
- Notion of composable core-sets
- Algorithms for finding core-sets for diversity maximization
- 1. Maximizing the minimum pairwise distance
- 2. Maximizing the volume

Diversity maximization over large data sets

[MJK'17,GCGS'14]

Video summarization

[KT+'12, CGGS'15,KT'11]

Document summarization

[YFZ+'16]

Tweet generation

[LCYO'16]

Object detection

••••

• e.g. streaming, distributed, parallel

Diversity maximization over large data sets

[MJK'17,GCGS'14]

Video summarization

[KT+'12, CGGS'15,KT'11]

Document summarization

[YFZ+'16]

Tweet generation

[LCYO'16]

Object detection

••••

- Most applications deal with massive data
- Lots of effort for solving the problem in massive data models of computation [MJK'17, WIB'14, PJG+'14, MKSK'13, MKBK'15, MZ'15, MZ'15, BENW'15]
- e.g. streaming, distributed, parallel

Composable Core-sets

Core-sets [AHV'05]: a subset S of the data V that represents it well

Solving the problem over S gives a good approximation of solving the problem over V

Core-sets [AHV'05]: a subset *S* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

A subset $S \subset V$ is called composable coreset if

—The union of coresets is an α -approximate coreset for the union

Core-sets [AHV'05]: a subset *S* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

Let f be an optimization function

–E.g. f(V) is the solution of diversity maximization

A subset $S \subset V$ is called composable coreset if

The union of coresets is an α -approximate coreset for the union

Core-sets [AHV'05]: a subset *S* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

Let f be an optimization function

–E.g. f(V) is the solution of diversity maximization

A subset $S \subset V$ is called composable coreset if

The union of coresets is an α -approximate coreset for the union

i.e. for multiple data sets V_1, \dots, V_m and their coresets S_1, \dots, S_m ,

Core-sets [AHV'05]: a subset *S* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

Let f be an optimization function

–E.g. f(V) is the solution of diversity maximization

A subset $S \subset V$ is called composable coreset if

The union of coresets is an α -approximate coreset for the union

i.e. for multiple data sets V_1, \dots, V_m and their coresets S_1, \dots, S_m ,

Core-sets [AHV'05]: a subset *S* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

Let f be an optimization function

–E.g. f(V) is the solution of diversity maximization

A subset $S \subset V$ is called composable coreset if

The union of coresets is an α -approximate coreset for the union

i.e. for multiple data sets V_1, \dots, V_m and their coresets S_1, \dots, S_m ,

Core-sets [AHV'05]: a subset *S* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

Let f be an optimization function

–E.g. f(V) is the solution of diversity maximization

A subset $S \subset V$ is called composable coreset if

—The union of coresets is an α -approximate coreset for the union

i.e. for multiple data sets V_1, \dots, V_m and their coresets S_1, \dots, S_m ,

Core-sets [AHV'05]: a subset *S* of the data *V* that represents it well

Composable Core-sets [AAIMV'13 and IMMM'14]:

Let f be an optimization function

-E.g. f(V) is the solution of diversity maximization

A subset $S \subset V$ is called composable coreset if

The union of coresets is an α -approximate coreset for the union

i.e. for multiple data sets V_1, \dots, V_m and their coresets S_1, \dots, S_m ,

- Streaming Computation:
 - Processing sequence of n data elements "on the fly"
 - limited Storage

- Streaming Computation:
 - Processing sequence of n data elements "on the fly"
 - limited Storage
- c-Composable Core-set of size k
 - Chunks of size \sqrt{n} , thus number of chunks = \sqrt{n}

- Streaming Computation:
 - Processing sequence of n data elements "on the fly"
 - limited Storage
- c-Composable Core-set of size k
 - Chunks of size \sqrt{n} , thus number of chunks = \sqrt{n}
 - Core-set for each chunk

- Streaming Computation:
 - Processing sequence of n data elements "on the fly"
 - limited Storage
- c-Composable Core-set of size k
 - Chunks of size \sqrt{n} , thus number of chunks = \sqrt{n}
 - Core-set for each chunk

Streaming Computation:

- Processing sequence of n data elements "on the fly"
- limited Storage

c-Composable Core-set of size k

- Chunks of size \sqrt{n} , thus number of chunks = \sqrt{n}
- Core-set for each chunk
- Total Space: (core-set size) $\cdot \sqrt{n} + \sqrt{n}$
- Approximation Factor: *c*

Applications: Distributed Computation

Streaming Computation

Distributed System:

- Each machine holds a block of data.
- A composable core-set is computed and sent to the server

Map-Reduce Model:

- One round of Map-Reduce
- \sqrt{n} mappers each getting \sqrt{n} points
- ullet Mapper computes a composable core-set of size k
- Will be passed to a single reducer

Applications: Improving Runtime

- Streaming Computation
- Distributed System
- Similar framework for improving the runtime

Can we get a composable core-set of small size for the diversity maximization problem?

- Background on diversity maximization and how to model diversity
- Notion of composable core-sets
- Algorithms for finding core-sets for diversity maximization
- 1. Maximizing the minimum pairwise distance
- 2. Maximizing the volume

Diversity Notion	Coreset Size	Approx.	Reference	Offline
Min Pairwise Distance	k	0(1)	[IMMM'14]	heta(1) [Ravi et al 94]
Sum of Pairwise distances	k	0(1)	[IMMM'14]	heta(1) [Hassin et al 97]
•••				
Volume	$\tilde{O}(k)$	$\tilde{O}(k)^{k/2}$	[IMOR'18]	$m{O}ig(c^kig), m{\Omega}ig(c^kig)$ [Nik'15],[CIM'13]

Diversity Notion	Coreset Size	Approx.	Reference	Offline
Min Pairwise Distance	k	0(1)	[IMMM'14]	$oldsymbol{ heta}(1)$ [Ravi et al 94]
Sum of Pairwise distances	k	0(1)	[IMMM'14]	heta(1) [Hassin et al 97]
•••				
Volume	$ ilde{O}(k)$	$\tilde{O}(k)^{k/2}$	[IMOR'18]	$m{O}ig(c^kig), m{\Omega}(c^k)$ [Nik'15],[CIM'13]

Diversity Notion	Coreset Size	Approx.	Reference	Offline
Min Pairwise Distance	k	0(1)	[IMMM'14]	θ (1) [Ravi et al 94]
Sum of Pairwise distances	k	0(1)	[IMMM'14]	heta(1) [Hassin et al 97]
•••				
Volume	$\tilde{O}(k)$	$\tilde{O}(k)^{k/2}$	[IMOR'18]	$m{O}ig(c^kig), \Omega(c^kig)$ [Nik'15],[CIM'13]

Diversity: Minimum Pairwise Distance

Joint work with S. Abbar, S. Amer-Yahia, P. Indyk, K. Varadarajan

- Background on diversity maximization and how to model diversity
- Notion of composable core-sets
- Algorithms for finding core-sets for diversity maximization
- 1. Maximizing the minimum pairwise distance
- 2. Maximizing the volume

Minimum Pairwise Distance

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Goal: pick k points s.t. the minimum pairwise distance of the picked points is maximized.

The Greedy Algorithm produces a composable core-set of

size k with approximation factor O(1).

The Greedy Algorithm produces a composable core-set of size k with approximation factor O(1).

Input: a set V of n points and a parameter k

- 1. Start with an empty set S
- 2. For k iterations, add the point $p \in V \setminus S$ that is farthest away from S.

Observation

Let r be the diversity of S, i.e., $\min_{q_1,q_2 \in S} dist(q_1,q_2)$

Observation

Let r be the diversity of S, i.e., $\min_{q_1,q_2 \in S} dist(q_1,q_2)$

Observation: For any point $p \in V$, we have $dist(p, S) \leq r$

• $\exists q \in S \text{ such that } dist(p,q) \leq r$

Proof Idea

The Greedy Algorithm produces a composable core-set of

size k with approximation factor O(1)

Let V_1, \dots, V_m be the set of points, $V = \bigcup_i V_i$

Let V_1, \dots, V_m be the set of points,

 $V = \bigcup_i V_i$

Let S_1, \dots, S_m be their core-sets,

$$S = \bigcup_i S_i$$

Let V_1, \dots, V_m be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Goal: there exists k points in S whose diversity is large in compare to the optimal set of k points in V

Let V_1, \dots, V_m be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, \dots, o_k\}$ be the optimal solution

Let V_1, \dots, V_m be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Case 1: one of S_i has good enough diversity (r_i is large)

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Case 1: one of S_i has good enough diversity (r_i is large)

 $\succ S_i$ is a good solution

Let V_1, \dots, V_m be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Case 1: one of S_i has good enough diversity (r_i is large)

Case 2: all r_i are small

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Case 1: one of S_i has good enough diversity (r_i is large)

Case 2: all r_i are small

• Find a mapping μ from $Opt = \{o_1, ..., o_k\}$ to S

Let $V_1, ..., V_m$ be the set of points, $V = \bigcup_i V_i$

Let $S_1, ..., S_m$ be their core-sets, $S = \bigcup_i S_i$

Let $Opt = \{o_1, ..., o_k\}$ be the optimal solution

Case 1: one of S_i has good enough diversity (r_i is large)

Case 2: all r_i are small

- Find a mapping μ from $Opt = \{o_1, ..., o_k\}$ to S
- Replacing o_i with $\mu(o_i)$ has still large diversity

The Greedy Algorithm produces a composable core-set of

size k with approximation factor O(1).

Real time recommendation of diverse related articles [AAIM WWW'13]

Real time recommendation of diverse related articles [AAIM WWW'13]

Goal:

Recommend a few news articles based on what article the user is currently reading.

Real time recommendation of diverse related articles [AAIM WWW'13]

Goal:

Recommend a few news articles based on what article the user is currently reading.

Data:

Aljazeera English opinion articles, and Reuters news articles

Real time recommendation of diverse related articles [AAIM WWW'13]

Goal:

Recommend a few news articles based on what article the user is currently reading.

Data:

Aljazeera English opinion articles, and Reuters news articles

Composable Coresets

+

Nearest Neighbor Data Structure (LSH)

Real time recommendation of diverse related articles [AAIM WWW'13]

Goal:

Recommend a few news articles based on what article the user is currently reading.

Data:

Aljazeera English opinion articles, and Reuters news articles

Results:

- ✓ The algorithm works well in practice, e.g.,
 - In compare to k-nearest neighbor retrieval, we gain ~37% in diversity while losing only ~5% on relevance.
 - Adding the coresets to the LSH improves the retrieve time by ~20x, with no meaningful loss on diversity.

Diversity Notion	Coreset Size	Approx.	Reference	Offline
Min Pairwise Distance	k	0(1)	[IMMM'14]	$oldsymbol{ heta}(1)$ [Ravi et al 94]
Sum of Pairwise distances	k	0(1)	[IMMM'14]	heta(1) [Hassin et al 97]
•••				
Volume	$ ilde{O}(k)$	$\tilde{O}(k)^{k/2}$	[IMOR'18]	$m{Oig(c^kig)}, m{\Omega(c^kig)}$ [Nik'15],[CIM'13]

Diversity: Volume of the points

Joint work with P. Indyk, S. Oveis Gharan, A. Rezaei

- Background on diversity maximization and how to model diversity
- Notion of composable core-sets
- Algorithms for finding core-sets for diversity maximization
- 1. Maximizing the minimum pairwise distance
- 2. Maximizing the volume

Volume (Determinant) Maximization Problem

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Volume (Determinant) Maximization Problem

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

Volume (Determinant) Maximization Problem

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

• Hard to approximate within a factor of 2^{ck} [CMI'13]

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: $2^{O(k)}$ -approximation [Nik'15]

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: $2^{O(k)}$ -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - \blacksquare Add to U the farthest point from the subspace spanned by U

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: $2^{O(k)}$ -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: $2^{O(k)}$ -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: $2^{O(k)}$ -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - \blacksquare Add to U the farthest point from the subspace spanned by U

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: $2^{O(k)}$ -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U

- Hard to approximate within a factor of 2^{ck} [CMI'13]
- Best algorithm: $2^{O(k)}$ -approximation [Nik'15]
- Greedy is a popular algorithm: achieves approximation factor k!
 - $\blacksquare U \leftarrow \emptyset$
 - For *k* iterations,
 - lacktriangle Add to U the farthest point from the subspace spanned by U

Determinantal Point Processes (DPP)

DPP: Popular probabilistic model, where given a set of vectors V, samples any k-subset S with probability proportional to this volume.

 Maximum a posteriori (MAP) decoding is volume maximization

Determinant (Volume) Maximization Problem

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

$$\left[\begin{array}{c} v_1 \ v_2 \ ... \ v_n \end{array}\right]$$

Equivalent Formulation:

Reuse V to denote the matrix where its columns are the vectors in V

Determinant (Volume) Maximization Problem

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

Equivalent Formulation:

Reuse V to denote the matrix where its columns are the vectors in V

• Let M be the gram matrix V^TV

$$M_{i,j} = v_i \cdot v_j$$

Determinant (Volume) Maximization Problem

Input: a set of n vectors $V \subset \mathbb{R}^d$ and a parameter $k \leq d$,

Output: a subset $S \subset V$ of size k with the maximum volume

Parallelepiped spanned by the points in S

Equivalent Formulation:

Reuse V to denote the matrix where its columns are the vectors in V

- Let M be the gram matrix V^TV
- Choose S such that $det(M_{S,S})$ is maximized

$$M_{i,j} = v_i \cdot v_j$$

 $\det(M_{S,S}) = Vol(S)^2$

Result: optimal composable core-set

Composable Core-sets for Volume Maximization:

Algorithm:

There exists a polynomial time algorithm for computing an $\widetilde{O}(k)^{\frac{k}{2}}$ - composable core-set of size $\widetilde{O}(k)$ for the volume maximization problem.

Lower bound:

Any composable core-set of size $k^{0(1)}$ for the volume maximization problem must have an approximation factor of $\Omega(k)^{\frac{k}{2}(1-o(1))}$.

Result: optimal composable core-set

Composable Core-sets for Volume Maximization:

Algorithm:

There exists a polynomial time algorithm for computing an $\widetilde{O}(k)^{\frac{k}{2}}$ - composable core-set of size $\widetilde{O}(k)$ for the volume maximization problem.

Lower bound:

Any composable core-set of size $k^{0(1)}$ for the volume maximization problem must have an approximation factor of $\Omega(k)^{\frac{k}{2}(1-o(1))}$.

 \triangleright Note the gap with the approximation factor of the best offline algorithm: $2^{O(k)}$

In this Talk

Composable Core-sets for Volume Maximization:

Algorithm:

There exists a polynomial time algorithm for computing an $\widetilde{O}(k)^k$ -composable core-set of size $\widetilde{O}(k)$ for the volume maximization problem.

Lower bound:

Any composable core-set of size $k^{O(1)}$ for the volume maximization problem must have an approximation factor of $\Omega(k)^{\frac{k}{2}(1-o(1))}$.

The Local Search Algorithm produces a composable core-set

of size k with approximation factor $O(k)^k$

The Local Search Algorithm produces a composable core-set

of size k with approximation factor $O(k)^k$

In compare to the optimal core-set algorithm

 \triangleright Approximation $O(k)^k$ as opposed to $O(k \log k)^{\frac{\kappa}{2}}$

The Local Search Algorithm produces a composable core-set

of size k with approximation factor $O(k)^k$

In compare to the optimal core-set algorithm

- \triangleright Approximation $O(k)^k$ as opposed to $O(k \log k)^{\frac{\kappa}{2}}$
- \triangleright Size k as opposed to $O(k \log k)$
- Simpler to implement (similar to Greedy)
- Better performance in practice

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

- 1. Start with an arbitrary subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\} \setminus \{q\}$

To bound the run time

Input: a set *V* of *n* points

Start with a crude approximation (Greedy algorithm)

- 1. Start with an **arbitrary** subset of k points $S \subseteq V$
- 2. While there exists a point $p \in V \setminus S$ and $q \in S$ s.t. replacing p with q increases the volume, then swap them, i.e., $S = S \cup \{p\}$

If it increases by at least a factor of $(1 + \epsilon)$

Local Search algorithm preserves maximum distances to "all" subspaces of dimension $oldsymbol{k}-\mathbf{1}$

- > V is the point set
- $\triangleright S = LS(V)$ is the core-set produced by the local search algorithm.

Local Search algorithm preserves maximum distances to "all" subspaces of dimension k-1

- V is the point set
- $\triangleright S = LS(V)$ is the core-set produced by the local search algorithm.

Theorem:

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{q \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{q \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

p

• Let $p \in V$ be a point

For any (k-1)-dimensional subspace ${\it G}$, the maximum distance of the point set to ${\it G}$ is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q, G) \le x$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal: $d(p,G) \leq 2kx$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal: $d(p,G) \leq 2kx$
- $H := H_S$ be the subspace passing through S

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \le x$
- Goal: $d(p,G) \leq 2kx$
- $H := H_S$ be the subspace passing through S
- Let p_H be the projection of p onto G

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q, G) \le x$
- Goal:

$$d(p,G) \leq 2kx$$

- $H := H_S$ be the subspace passing through S
- Let p_H be the projection of p onto G

Lemma 1: $d(p, p_H) \le kx$

Lemma 2: $d(p_H, G) \le kx$

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{s \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Proof.

- Let $p \in V$ be a point
- Let G be a (k-1)-dimensional subspace.
- Assume for any $q \in S$, $d(q,G) \leq x$
- Goal:

$$d(p,G) \leq 2kx$$

 $\leq 2kx$

• $H := H_S$ be the subspace passing through S

• Let p_H be the projection of p onto G

 p_H

Lemma 1: $d(p, p_H) \le kx$

Lemma 2: $d(p_H, G) \leq kx$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

Proof.

• Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \le 1$

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i}\coloneqq H_{S\setminus\{q_i\}}$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i} \coloneqq H_{S \setminus \{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \le 1$

Proof.

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- ullet Let $H_{-i}\coloneqq H_{S\setminus\{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$
- Since p_H is a projection of p onto H, $dist(p_H, H_{-i}) \le dist(p, H_{-i})$

•

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \le 1$

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i} \coloneqq H_{S \setminus \{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$
- Since p_H is a projection of p onto H, $dist(p_H, H_{-i}) \le dist(p, H_{-i})$
- Thus $dist(p_H, H_{-i}) \leq dist(q_i, H_{-i})$

Claim:

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \le 1$

- Since H has dimension k, we can write $p_H = \sum_{i=1}^k \alpha_i q_i$
- Let $H_{-i}\coloneqq H_{S\setminus\{q_i\}}$
- Since we did not choose p in LS, $dist(p, H_{-i}) \leq dist(q_i, H_{-i})$
- Since p_H is a projection of p onto H, $dist(p_H, H_{-i}) \le dist(p, H_{-i})$
- Thus $dist(p_H, H_{-i}) \leq dist(q_i, H_{-i})$
- Thus $|\alpha_i| \leq 1$

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \leq 1$

We can write $p_H = \sum_{i=1}^k \alpha_i q_i$ s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

Lemma 1: $d(p, p_H) \le kx$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

Lemma 1: $d(p, p_H) \le kx$

Goal: $d(p,G) \leq 2kx$

We can write
$$p_H = \sum_{i=1}^k \alpha_i q_i$$
 s.t. all $|\alpha_i| \le 1$

Assumption: $dist(q_i, G) \le x$

Lemma2: $dist(p_H, G) \leq \sum_{i=1}^k \alpha_i dist(q_i, G) \leq k \cdot x \leq kx$

Lemma 1: $d(p, p_H) \leq kx$

Goal: $d(p, G) \le 2kx$

Theorem:

For any (k-1)-dimensional subspace G, the maximum distance of the point set to G is approximately preserved

$$\max_{q \in S} dist(q, G) \ge \frac{1}{2k} \cdot \max_{p \in V} dist(p, G)$$

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

$$Sol \leftarrow Opt$$

For i = 1 to k

- Let $q_i \in S$ be the point that is far
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$

Since local search preserve maximum distances to subspaces

 \triangleright Lose a factor of at most 2k at each iteration

Let $V = \bigcup_i V_i$ be the union of the point sets

Let $S = \bigcup_i S_i$ be the union of core-sets

Let $Opt = \{o_1, ..., o_k\} \subset V$ be the optimal subset of points maximizing the volume

 $Sol \leftarrow Opt$

For i = 1 to k

- Let $q_i \in S$ be the point that is farthest away from $H_{Sol\setminus\{o_i\}}$
- $Sol \leftarrow Sol \cup \{q_i\} \setminus \{o_i\}$
- \triangleright Lose a factor of at most 2k at each iteration
- \triangleright Total approximation factor $(2k)^k$

In this Talk

Composable Core-sets for Volume Maximization:

Algorithm:

There exists a polynomial time algorithm for computing an $O(k)^k$ -composable core-set of size $\widetilde{O}(k)$ for the volume maximization problem.

Lower bound:

Any composable core-set of size $k^{O(1)}$ for the volume maximization problem must have an approximation factor of $\Omega(k)^{\frac{k}{2}(1-o(1))}$.

Optimal core-set

Composable Core-sets for Volume Maximization:

Algorithm:

There exists a polynomial time algorithm for computing an $\widetilde{O}(k)^{\frac{k}{2}}$ - composable core-set of size $\widetilde{O}(k)$ for the volume maximization problem.

Lower bound:

Any composable core-set of size $k^{O(1)}$ for the volume maximization problem must have an approximation factor of $\Omega(k)^{\frac{k}{2}(1-o(1))}$.

Experiments: comparison of core-sets for volume maximization

- Greedy algorithm
 - Widely used in Practice
 - We showed it achieves $O(C^{k^2})$
- Local Search algorithm
 - Performs better than Greedy but runs ~4 times slower.
 - Achieves $O(k)^k$
- The optimal core-set algorithm
 - Achieves $\tilde{O}(k)^{k/2}$
 - Performs worse than Local Search and runs slower.

Summary

- Different notions of diversity
- Notion of composable core-sets
- Algorithms that find composable core-sets for diversity maximization under different notions

Diversity Notion	Coreset Size	Approx.	Reference	Offline
Min Pairwise Distance	k	0(1)	[IMMM'14]	heta(1) [Ravi et al 94]
Sum of Pairwise distances	k	0(1)	[IMMM'14]	heta(1) [Hassin et al 97]
•••				
Volume	$ ilde{O}(k)$	$\tilde{O}(k)^{k/2}$	[IMOR'18]	$m{O}ig(c^kig), m{\Omega}(c^kig)$ [Nik'15],[CIM'13]

Open Problems

- Characterizing problems that admit composable coresets
- Optimal algorithms for diversity maximization in other massive data models of computation (e.g. Streaming, MPC)
- Composable Core-sets for DPP sampling?

Open Problems

- Characterizing problems that admit composable coresets
- Optimal algorithms for diversity maximization in other massive data models of computation (e.g. Streaming, MPC)
- Composable Core-sets for DPP sampling?

